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ABSTRACT

Magnetic field line motion and its relationship with particle
E'x E’drifts are considered. It is shown that a unique and significant
field line‘identification can be made whenever all field lines in a
region pierce a conducting, but arbitrarily shaped surface. If the
region in question is free space, particle electric drifts, in general,
bear no relation with field line motion identified in this fashion.
However, with a conducting plasma filling the region and allowing no
parallel component of electric field ( E’- E’= 0), particles drift so
as to always remain on the same magnetic line of force. These points
are specifically illustrated for a time-dependent model of the earth's

magnetosphere.
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INTRODUCTION

A widely used concept in the electrodynamics of a guiding center plasma
is that of frozen-in maghetic field line motion. This concept asserts
(Newcomb, 1958) that the velocity field constructed instantaneously of
particle E'x E'drift velocities is, in the appropriate circumstances, a
legitimate (flux preserving) field line motion.

Theoretical analyses of particle diffusion in the earth's magnetosphere

have used this concept (Kellogg, 1959; Parker, 1960; Davis and Chang, 1962;

Nakada and Mead, 1965; Filthammar, 1965; Conrath, 1967). During model,

time-dependeni., magnetospheric disturbances, a magnetic field line is
identified (in these studies) by the time invariant longitude and latitude
with which it enters the earth's dipole. BEach field line is consequently
traced through space (using the field line equations) as a function of

time. The frozen-in field line concept is then applied in the identification
of particle E,X E’drifts with the motion of field lines as so defined.

Our interest in this problem was stimulated by Kavanagh's (1967) recent
criticism of the work of Nakada and Mead. Kavanagh's criticism is equally
applicable to all of the previously cited work and is based upon a direct
calculation of particle electric drifts, using a vacuum electric field
characteristic of the time dependent magnetospheric models. Kavanagh
finds that the particle drifts which he calculates differ grossly from
the field line motions of the earlier work. Seemingly, either Kavanagh
or the earlier authors are in error.

In this paper we show how a magnetic field line velocity of significance
can be uniquely defined whenever all magnetic lines cut an arbitrarily shaped

but perfectly conducting surface. [t is found that particle E x B drifts
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coincide with the field line motion whenever no parallel component of
electric field exists ( E . E = 0). Our results indicate that the field
line identification and the frozen-in field assumption previously used
are indeed valid, but in a model which differs from that assumed by
Kavanagh by the presence of a conducting plasma. We further show
explicitly how the electric field found by Kavanagh is modified by the
presence of this conducting plasma, the ensuing E X E motions being then
identical with those derived by the earlier workers.

Field Line Identification In the Presence of a Conducting Surface

Consider a volume of space V in which there exists a magnetic field
E(f.,’ t). Let the field be sufficiently regular that it may be described
by Euler potentials a(£, t) and B(f,’ t), where B = Vy x V8. Define the
magnetic vector potential as é = ng.

The choice pf o and B is not unique, for any transformation
o =o' (e B, t), B' =8 (@ B, t) leads to equally acceptable Euler
potentials provided that the Jacobian, J < Q%:__g: , of the trarsformation
is unity. Such transformations of Euler potentials are ccmpletely equiv-
alent to gauge transformation of the vector potential A - A ‘V'JL .

Now consider a stationary surface S sufficiently large that every
line of force cuts S at least once. A choice of ¢ and g on S (subject,

of course, to B — Vo x VB) fixes the gauge throughout V.

The electric field E(r, %) is given by
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It may be verified by direct substitution that w satisfies the
equation

vx (E+ X0 =0
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and is therefore a perfectly valid flux preserving field line velocity.
as to preserve their o - B labels.

Further, with this field line identification, lines move in such a way

This follows from the easily proven
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Now let us demand that the surface S be a perfect conductor so
that we have the requirement that the normal component of B at the

surface be constant in time,

Q. JCCX‘ Xz) \T( s cunst. (6)
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Here n is the unit normal to the surface, X, and Xz are general coordinates
defined on the surface, f(X1, Xo) is a function which depends on the

curvilinear nature of the Xl, X, coordinates, and J is the Jacobian.

Equation 6 implies J ( 2) ( z> and hence J C
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Any changes with time of ¢ and B on S thus correspond to relabeling
. . A . So 3B
transformations, which we eliminate by choosing 3t = ot = 0 on the
surface S.
A unique identification of magnetic field lines is thus established:
a Tield line is permanently labeled by the time independent values of
o and B at the fixed point (or points) where it crosses 8. This is, in

fact, the identification of fileld lines made by the earlier authors, the

role of the conducting surface being here assumed by the requirement that
the same field line always enter the earth origin at the same longitude

and latitude.

The question now arises as to what relationship this motion has to
the particles which might be trapped in the magnetic field. The drift

of low energy trapped particles perpendicular to B is predominantly the

E x B drift velocity
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(Magnetic gradient and curvature drifts are proportional to the energy

of a particle.) This drift velocity is itself an acceptable field line

velocity only if

’ (8)
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Our (now uniquely specified) field line velocityw differs from this

drift velocity by

V-w=- ¢ EX ACERD,

' (9)

Since the tangential electric field vanishes at a conducting surface

and %% = %% = 0 on S by construction, we see from Eq. (1) that (¢ + ¢) is

constant everywhere on S. Without further restriction on the electric
B x Vg + )
field in the volume V, the term c¢ =— does not, in general,
B2
vanish; E is yet undetermined; and Vv and W differ. It is Just this

difference between z‘and‘x‘which is the objJect of Kavanagh's criticism.
Impose now the condition that E" E‘z 0 by filling the volume V
with & conducting plasma. We find from Eq. (1) that (p + ) is castant
along each field line. Furthermore, since all field lines intersect S
and (¢ + §) is constant on S, we conclude that when E-B-0, (p + ¥) is
constant throughout space. From Eq. (9) it is then immediately evident
that the electric drift velocity'z‘and this uniquely defined field line

velocity W are identical. The electric field is directly given as

E _ 1 [ B Vo - tele} VB] . This assumption that E * B - O distinguishes

the models developed in previous work from Kavanagh's vacuum configuration.

Application to a Model Magnetosphere

In jllustration of the field line identification proposed in the
previous section, we here consider a model for time dependent magnetospheric

distortions. The model is illustrated in Figure 1 and consists of a



spherical perfectly conducting earth of radius a and a dipole of moment
u offset at the distance 4(t). Internal to the sphere it is assumed

o
that there exists the static, uniform magnetic field Bi:~5§ éz. The
a

conducting sphere is the surface at which field line identification 1s
made.

The magnetic field external to the sphere has two sources: +the
moving dipole, instantaneously at ¢, and surface currents, both permanent

and induced, on the sphere. At points r << 4, this magnetic field has

the form
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Note that the undistorted magnetic field (4 - «) is also dipole in nature.

Longitudinally asymmetric compressions of the magnetosphere are caused by

dipole motion toward the sphere (:%% < OjL while expansions are the results

of the reverse dipole motion.(i%% > d).

It can be verified by direct differentiation (B - Vo x VB) that this
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magnetic field is represented to the indicated asymptotic order by

the Euler potentials
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Note that at the surface of the sphere, o and B reduce to the time invariant
values q = - % sin®§ , B = ¢- The unique identification of field lines
introduced in the previous section becomes for this example a question of
mapping in the region a < r << 4 the curves ¢ = const., g - const, as a
function of time (with, of course, o and g defined by Eq. 11).

Associated with the time varying magnetic field Eq. 10, is an electric
field. Assuming the region surrounding the sprhere to be a vacuum, we obtain

an analytic representation for this field by solving the equation

dB
VXE_- - % g% , subject to the boundary conditions (1) that the tangential
Nt

electric field be zero on the surface of the sphere and (2) that in the limit
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of vanishing sphere radius (a - 0) the field be simply represented as
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Note from Egqs. {(10) and (12) that at all longitudes ¢, low latitude
mirroring particles excute E x B motions away from the sun during magneto-

d
spheric compression a% < 0) and toward the sun during magnetospheric
expansion. One can directly verify from Egs. (11), however, that all
magnetic field lines at low latitudes move toward the earth during the

compressional phase. Herein 1is exemplified the difference between w and v

discussed in the previous section.
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That the electric drift is not a legitimate field line velocity

in this case may be verified directly:

The right hand side of Eq. (13%) is, in genersl, non-vanishing in the region
a<r << g.

Witness now the result of adding a plasma to the region external to
the sphere. Charge separation in the plasma is assumed the source of an
glectrostatic field which cancels the component of E’(as given by Eq. 12)
parallel to E: S50 long as %f << €, currents induced in a low B plssma are
negligible, and the magnetic field and Euler potentials as given by Egs.
(10) and (11) are virtually unaltered.

Thus, in the model as modified by this presence of plasma, the Euler

potentials may be used to directly calculate the electric field



- 12 -

EE L A0

- /u— — l €, SINY - e 2 ’L‘L [ J} T _:-}'
= ~ kiY 05 /rut — ._.C_ +—=]
CJZ 11: r 9" STTRT)

‘:;h%
ﬂ\
QU
c*\ﬁ

(k)
_..1 4 i 2 A -

Note that to leading order in (%) an azimuthally symmetric longitudinally
directed electric field from Eg. (14) combines with the undistorted dipile
magnetic field componeut of Eq. (10) to drive particles = fegethur wivh
field lines - toward the earth during magnebospheric comprecsion.

The electric field ss given by Kq. (1k) is, of course, nol divergence=
free. Poisson's Equation may be used to deduce the plasme charyve denginy

needed 1o effect the drastic change from the vacuum electric conligarstion

) T M Ci™ A AL - (1)
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For values representative of the earth's magnetospherelju - 1026 gauss cm3,

6 -
4 = 1010 cm (~ 20 earth radii), %% - g—g—igg—EE.J the maximum

charge density needed at six earth radii in the equatorial plane is

approximately 3 x 10720 &2 | This corresponds to an order of magnitude

3

difference in the number(zzisities of protons and electrons of one part
in 10%*° .,

Summary

Our main point in this paper has been %o indicate +that in any region
permeated by a magnetic field Ef the presence of a conducting surface
through which all field lines pass permits a unique, legitimate, and signi-~
ficant identification of the motion of magnetic field lines. The field
line motion so defined is the Elx Elparticle drift motion if E‘- E’: 0;
otherwise the two are different. For the case E'-‘E = 0 low energy
particles may be regarded as moving frozen to the field lines as identified
by this prescription.

In illustration of these points a time dependent model magnetosphere
has been considered. Distinction between the situations where the magneto-
sphere is free space and filled with plasma is made. The latter case is
found to correspond to models adopted in diffusion analyses where the frozen
in field assumption is - Justifisbly =~ used.
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Figure Captions

Figure 1. Geometry of the Compressed Magnetosphere.

-15 -




ajodig

@\
4 -
agdewl|




